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The flow patterns in the steady, viscous flow in a cylinder with a rotating bottom
and a free surface are investigated by a combination of topological and numerical
methods. Assuming the flow is axisymmetric, we derive a list of possible bifurcations
of streamline structures on varying two parameters, the Reynolds number and the
aspect ratio of the cylinder. Using this theory we systematically perform numerical
simulations to obtain the bifurcation diagram. The stability limit for steady flow is
found and established as a Hopf bifurcation. We compare with the experiments by
Spohn, Mory & Hopfinger (1993) and find both similarities and differences.

1. Introduction
The fluid motion in a cylinder generated by a rotating cover has proved to be a

useful tool for the study of secondary structures on a basic vortex flow. Experimental
investigations by Vogel (1968), Ronnenberg (1977), and Escudier (1984) have shown
that several recirculation bubbles may exist on the main vortex axis and that the flow
in the steady regime is axisymmetric to a high degree of accuracy. The axisymmetry
allows efficient computational studies to be performed, and as shown by e.g. Sørensen
& Loc (1989), Lopez (1990), and Tsitverblit (1993) good agreement with visualization
experiments can be obtained.

A number of variations of the basic configuration with one fixed and one rotating
cover have been studied, both experimentally and computationally. The fixed cover
has been replaced by a rotating cover (Valentine & Jahnke 1994; Gelfgat, Bar-Yoseph
& Solan 1996a, b, c; Jahnke & Valentine 1998), a non-Newtonian fluid has been used
(Escudier & Cullen 1996; Xue, Phan-Thien & Tanner 1999), a rod has been added
at the axis (Mullin et al. 2000), the flat rotating bottom cover has been replaced by
a cone (Pereira & Sousa 1999), and the fixed top cover has been replaced by a free
surface (Spohn, Mory & Hopfinger 1993; Lopez & Chen 1998). All these studies
show a large set of flow structures which are quite sensitive to variations of external
parameters.

In the present paper we present a classification of the flow structures that exist
in the steady domain for the configuration with a free surface on varying the two
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parameters, Reynolds number and aspect ratio of the cylinder,

Re =
ΩR2

ν
, h =

H

R
. (1)

Here Ω is the angular velocity of the bottom cover, H,R are the height and radius
of the cylinder respectively, and ν is the kinematic viscosity. The main aim is to
describe the structures in the parameter range considered experimentally by Spohn et
al. (1993). We obtain partial agreement as well as discrepancies, and also find details
that have not been resolved in the experiment.

Our approach is topological, that is, we consider the streamlines as trajectories
for the velocity field and apply methods from bifurcation theory to describe the
qualitative changes that are possible. We have previously (Brøns, Voigt & Sørensen
1999) used this idea to classify the patterns in the case with two solid covers, utilizing
the theory for bifurcation of patterns close to the cylinder axis developed by Brøns
(1999). Here we extend the theory to include bifurcations occuring close to both the
axis and the surface. We then use the topological apparatus to systematically extract
features of the flow patterns obtained from numerical simulations to construct the
bifurcation diagram. The richness of the problem is apparent from figure 1 which
shows the set of topologies we have encountered.

We assume the free surface to be flat, a reasonable assumption if the Froude
number is small as in the experiments by Spohn et al. (1993). Further, we neglect any
surface tension effects, so the surface is a pure slip boundary. With these assumptions,
the flow is identical to the flow in the lower half part of a cylinder with two solid
covers, both rotating with the same angular velocity.

To our knowledge, the flow structures in the case of the free surface has only
been considered experimentally by Spohn et al. (1993). For the equivalent case with
a co-rotating cover our results corroborates and extend the results by Valentine &
Jahnke (1994) and Gelfgat et al. (1996a, c).

As also established by Gelfgat et al. (1996b) the bifurcations of the structures we
consider are of a pure topological nature, and are not related to changes in stability
of the steady flow. However, to locate the parameter region where the analysis is valid
we also determine the stability limit for the steady flow. As is well-known for the flow
with a rigid cover (Daube & Sørensen 1989), the loss of stability happens through a
Hopf bifurcation.

The paper is organized as follows. In § 2 we derive the topological classification
theory. In § 3 the numerical method is presented and validated, and in § 4 the
bifurcation diagram is established and compared with experimental results. Finally,
conclusions are drawn in § 5.

2. Streamline topology of axisymmetric flow
2.1. Bifurcations on the axis

Axisymmetric flows can be described using cylindrical coordinates (r, θ, z) with the
corresponding velocity field v = (u, v, w) depending only on r, z. A stream function
ψ(r, z) can be defined such that

u =
1

r

∂ψ

∂z
, w =

1

r

∂ψ

∂r
. (2)

We are interested in the topology of the system of contours of ψ. Using ρ = r2/2
as a radial variable puts the differential equations for the contours into Hamiltonian
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Figure 1. Typical representatives of the observed flow topologies (contours of the stream function)
found in the steady domain. The drawings are scaled to the same normalized aspect ratio. Only the
right half of a meridional plane is shown. The vertical line to the left is the axis. (a) Re = 1000,
h = 2.0, no bubble. (b) Re = 2800, h = 4.0, axis bubble. (c) Re = 1000, h = 1.0, corner bubble. (d)
Re = 1700, h = 1.0, surface bubble. (e) Re = 1950, h = 3.0, two axis bubbles. (f) Re = 3000, h = 4.0,
one axis bubble and one corner bubble. (g) Re = 1700, h = 2.7, axis bubble with inner structure. (h)
Re = 3100, h = 4.0, corner bubble with inner structure. (i) Re = 2500, h = 1.9, corner bubble with
inner corner bubble. (j) Re = 2800, h = 2.0, surface bubble and in-flow saddle loop. (v) Re = 1500,
h = 0.3, transition towards multi-cell topology. (w) Re = 2100, h = 0.3, Multi-cell topology with
separatrices joining stagnation points at the surface and bottom. The latter two topologies are not
covered by the present analysis.

form,

ρ̇ = ru =
∂ψ

∂z
, ż = w = −∂ψ

∂ρ
. (3)

Since the present problem is characterized by two parameters, our interest is
concentrated on bifurcation of codimension up to two, that is, bifurcations that
can occur persistently in systems of the form (3) where ψ depends on up to two
parameters.

Topologies and bifurcations of structures close to the axis at a point away from
the surface have been treated in detail by Brøns (1999) and Brøns et al. (1999). The
relevant results are reviewed in figure 2. A regular critical point (a hyperbolic saddle)
is structurally stable. Two kinds of bifurcations of codimension-one exist: bubble
creation and bubble merging. The one possible codimension-two diagram consists
of three codimension-one curves meeting in the codimension-two point. These are a
bubble creation curve, a bubble merging curve, and a cusp bifurcation curve, that
is, the merging/creation of a centre and a saddle away from the axis, see Brøns &
Hartnack (1999).
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Figure 2. Local flow patterns and bifurcations close to the axis or the surface. (a) Regular critical
point. (b, c) Topology changes of codimension-one obtained by varying a parameter through a
degenerate configuration: (b) bubble creation, (c) bubble merging. (d) Codimension-two bifurcation
shown in a parameter plane where the parameters are denoted (ε, µ).

In the system (3) the variables ρ and z occur symmetrically. This means that the
variables may be interchanged, and in the topologies in figure 2 the axis can also play
the role of the surface. Brøns (1994) also finds these bifurcations in flows close to the
surface. A difference in the interpretation of the critical points in the two cases should
be noted, however. A critical point for ψ on the axis corresponds to a stagnation
point on the axis in the cylinder. A critical point on the surface corresponds to a
circular streamline embedded in the surface. Such critical points are denoted ‘periodic
points’ by Valentine & Jahnke (1994).

The results are based on an expansion of ψ in a Taylor series at a point on the
axis, taken to be the origin,

ψ = ρ

∞∑
n+m=0

an+1mρ
nzm, (4)

where the factor ρ accounts for the axis being a streamline. To study structures close
to both the axis and the surface, the relevant expansion is

ψ = ρz

∞∑
n+m=0

an+1m+1ρ
nzm (5)

which reflects that both the axis and the surface (which we here choose to be z = 0)
are contours of ψ. The bifurcation analysis for this case has not been performed
before and is the subject of the following. For simplicity we denote the origin – the
intersection of the axis with the surface – as the corner, and let the fluid region below
the surface be ρ > 0, z 6 0.

2.2. Bifurcations close to the corner

Including terms to second order in (5) yields the linearized equations for the contours,

ρ̇ = a11ρ, ż = −a11z. (6)

If a11 6= 0, the corner is a regular saddle point, figure 3. The direction of the flow
depends on the sign of a11. If a11 = 0, the corner is a degenerate critical point, and
higher-order terms are decisive. To find the codimension-one bifurcations as a11 goes
through zero, we rename a11 as ε to display it is a small parameter and consider the
cubic approximation of ψ, yielding

ρ̇ = ρ(ε+ a21ρ+ 2a12z), ż = −z(ε+ 2a21ρ+ a12z), (7)

where we assume a12, a21 both non-zero.
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Figure 3. A regular critical point in the corner.

(b)

(a)

ε < 0 ε = 0 ε > 0

Figure 4. Codimension-one bifurcations at the corner for a12 > 0. (a) a21 > 0, corner crossing
bifurcation. (b) a21 < 0, corner bubble creation. The same bifurcations occur for a12 < 0 but in
reverse order in ε.

The system has a critical point on the axis (ρ = 0) at z = −ε/a12, a critical point
on the surface (z = 0) at ρ = −ε/a21, and an in-flow critical point at

ρ = − ε

3a21

, z = − ε

3a12

. (8)

The bifurcation diagrams are shown in figure 4. In case (a) a critical point crosses the
corner, in (b) a corner bubble is created/destroyed.

A codimension-two situation occurs if, in addition to a11 = 0, one of a12, a21 is
also zero. We consider the case a12 = 0 but a21 6= 0. To find the bifurcations as the
degenerate parameters are close to zero, we rename them

ε̃ = a11, µ̃ = a12 (9)

and first simplify the equations slightly by a coordinate transformation to a nonlinear
normal form, following Brøns (1999) and Brøns & Hartnack (1999). The new coor-
dinates (x, y) are found from a canonical transformation defined by the generating
function

S =
∑

k+l+n+m=3

sklmnε̃
kµ̃lρnym (10)

such that

x =
∂S

∂y
, z =

∂S

∂ρ
. (11)

For an introduction to canonical transformations using generating functions, see e.g.
Goldstein (1950). The specific choice of S ensures that (11) defines an almost-identity
coordinate transformation for any choice of the sklmn. Indeed, solving (11) for x, y and
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including terms up to the second order yields

x = ρ+ 2s1200ρz + s2100ρ
2 + s1101ρµ̃+ s1110ρε̃+ 2s0210zε̃

+s0111ε̃µ̃+ s0120ε̃
2 + 3s0300z

2 + 2s0201zµ̃+ s0102µ̃
2,

y = z − s1200z
2 − s1101zµ̃− s1002µ̃

2 − s1110zε̃− s1011ε̃µ̃

−s1020ε̃
2 − 2s2100ρz − 2s2001ρµ̃− 2s2010ρε̃− 3s3000ρ

2.

 (12)

As the topology of the contours of ψ is unchanged under a smooth coordinate
transformation, we are free to choose the sklmn to make the transformed ψ as simple
as possible. First we require that the transformation preserves the boundaries, i.e.
ρ = 0 is mapped to x = 0 and z = 0 is mapped to y = 0. This forces a number of the
sklmn to be zero. Using this, insertion of (12) in the expansion (5) and truncating after
the fourth order results in

ψ = xy(̃ε+ (a21 + s2100ε̃)x+ (µ̃− s1200ε̃)y

+(a31 + s2100a21)x
2 + (a22 − s1200a21)xy + a13y

2). (13)

With the choice

s2100 = −a31

a21

, s1200 =
a22

a21

, (14)

the x3y and x2y2 terms disappear and we obtain

ψ = xy

(
ε̃+

(
a21 − a31

a21

ε̃

)
x+

(
µ̃− a22

a21

ε̃

)
y + a13y

2

)
. (15)

Finally, with the added non-degeneracy condition a13 6= 0, we can divide ψ by
a13, since multiplying ψ by a constant does not modify the set of contours, only the
specific value of ψ along a given curve. This results in the normal form

ψ = xy(ε+ b21x+ µy + y2) (16)

with

ε =
ε̃

a13

, b21 =
a2

21 − a31ε̃

a21a13

, µ =
a21µ̃− a22ε̃

a21a13

. (17)

The (ε, µ) parameter space will be partitioned by curves of codimension-one bifur-
cations. We proceed by determining these curves for each of the possible types. In
each case, the condition for bifurcation is that a critical point (xc, yc) exists with a
singular Jacobian, that is

ψx(xc, yc) = 0, ψy(xc, yc) = 0, −ψxy(xc, yc)2 + ψxx(xc, yc)ψyy(xc, yc) = 0, (18)

where the subscripts denote differentiation.
For bifurcations in the corner, (xc, yc) = (0, 0). Inserting this in (18) with ψ given by

(16) makes the first two conditions identically fulfilled and the last condition yields
ε = 0. According to the previous analysis, the type of bifurcation is determined by the
sign of a21 in the expansion (5), that is, by the sign of ψxxy(0, 0). The non-degeneracy
condition is a12 = ψxyy(0, 0) 6= 0. We obtain

ψxxy(0, 0) = 2b21, ψxyy(0, 0) = 2µ. (19)

We conclude that the bifurcation at ε = 0 for µ 6= 0 is a corner crossing if µ and b21

have the same sign, and a corner bubble creation if µ and b21 have opposite sign.
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ε

Figure 5. Codimension-two bifurcations near the corner. (a) b21 < 0, (b) b21 > 0.

For bifurcations on the axis, xc = 0, yc 6= 0. Here (18) gives two non-trival con-
ditions, which can be solved to yield the bifurcation curve ε = µ2/4 and the critical
point yc = −µ/2. As yc < 0, the bifurcation occurs only for µ > 0. From the the-
ory of Brøns (1999) the type of bifurcation (bubble creation or bubble merging) is
determined by the sign of ψxx(0, yc)/ψxyy(0, yc), with two non-degeneracy conditions,
ψxx(0, yc) 6= 0, ψxyy(0, yc) 6= 0. Here we get

ψxx(0, yc)

ψxyy(0, yc)
= b21, ψxx(0, yc) = −b21µ, ψxyy(0, yc) = −µ. (20)

The bifurcation at ε = µ2/4 is hence non-degenerate for µ 6= 0 and is a bubble
creation for b21 > 0 and a bubble merging for b21 < 0.

For bifurcations on the surface, xc 6= 0, yc = 0. However, proceeding as above shows
that no critical point on the surface can be degenerate.

Finally, the degenerate critical point may be located away from the boundaries,
and the bifurcation is a cusp bifurcation where a saddle and a centre merge and
disappear. In this case all conditions in (18) are non-trivial and can be solved for
xc, yc and ε in terms of µ. After some algebra one obtains the bifurcation curve and
the critical point,

ε = 9
20
µ2 + O(µ3), xc = − 3

25

µ2

b21

+ O(µ3), yc = − 3
10
µ2 + O(µ2). (21)

As xc > 0 and yc < 0, this bifurcation can occur only when b21 < 0 and µ > 0.
Combining these results, the bifurcation diagrams in figure 5 are obtained. Again, ρ

and z may be interchanged, corresponding to assuming a21 small and a12 6= 0, a31 6= 0,
and the axis and the surface in figure 5 are interchanged.

It should be noted that in establishing figure 5 we have only taken local bifurcations
in account. However, one type of global codimension-one bifurcation also exists,
namely the breaking of a saddle connection between three regular saddle points,
see e.g. Bakker (1991). To examine whether such bifurcations do occur here one
may start by noting that with the number of critical points available, a saddle
connection can only involve two critical points on the boundary and one point away
from the boundary. For the latter critical point we must have ψ = 0. It is not
difficult to establish that this is not possible, and, having now considered all kinds of
codimension-one bifurcation curves, the bifurcation diagrams are complete.
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3. Numerics
3.1. Numerical location of bifurcation sets

For the numerical simulations we use the finite difference code developed at LIMSI/
CNRS (Daube et al. 1985). At the free surface the following boundary conditions
apply:

ψ = w =
∂ψ

∂r
= 0,

∂2ψ

∂z2
= 0. (22)

For further information on the implementation for the flow in a cylinder with a
fixed cover, including references, see Sørensen & Loc (1989) and Brøns et al. (1999).

Lengths are non-dimensionalized by the cylinder radius R, and the computational
domain is 0 6 r 6 1,−h 6 z 6 0. Based on previous experience and the results we
present in § 3.2 a grid size of 100× 100h for h > 1 and 100/h× 100 for h < 1 was
found to be sufficient for analysing the parameter range of interest. Hence a larger
computational effort is needed for values of h higher and lower than one.

Using the code, we obtain steady states by simulating until transients have died
out. A state is accepted as being steady if the relative change of v in the (arbitrary)
grid point (50, 50) has not been more than 10−13 for at least 250 time-step iterations.
However, for the smallest aspect ratios and low Re the number of steps was reduced
to 50 since the diffusion requirement

∆t < 1
8
Re∆r2 (23)

forces a reduction in the time-step ∆t to avoid divergence, see Lopez (1990). In other
parts of the parameter region ∆t is limited by the convective stability criterion,

∆t <
∆x

U
, (24)

where U is the velocity and x is the streamwise direction.
To establish the topology of a numerically determined ψ the critical points must

be located. To locate critical points on the axis we proceed as in Brøns et al. (1999).
From a Taylor expansion we get

ψ(∆r, z) = ψ(0, z) +
∂ψ

∂r
(0, z)∆r +

1

2

∂2ψ

∂r2
(0, z)∆r2 + O(∆r3). (25)

Since ψ and ∂ψ/∂r are both zero on the axis we get to second order

w(0, z) = −∂
2ψ

∂r2
(0, z) ≈ 2

∆r2
ψ(∆r, z). (26)

Hence, we can locate critical points on the axis as zeros of ψ1(z) = ψ(∆r, z).
Let p1 denote a value of z where ψ1 attains a local extremum. Then a bifurcation

of critical points as shown in figure 2(b, c) occurs at p1 if ψ(p1) = 0, for further details,
see Brøns et al. (1999). This can be used for a least-squares fit of bifurcation curves.
From a set of K simulations at different parameter pairs (hi, Rei) and corresponding
values ψ(i) at an extremum p

(i)
1 , we form the expression

C(h, Re) = c00 + c10h+ c01Re+ c20h
2 + c02Re

2 + c11hRe, (27)

and determine the c by minimizing

K∑
i=1

(C(hi, Rei)− ψ(i))2. (28)

A bifurcation curve is then found as C(h, Re) = 0.
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For the present problem quadratic fits like (27) of the bifurcation curves turn out
to suffice, except for a single case where a cubic fit is used. In general, other choices
are of course possible.

To locate critical points on the surface we proceed similarly. In the Taylor expansion

ψ(r,−∆z) = ψ(r, 0)− ∂ψ

∂z
(r, 0)∆z +

1

2

∂2ψ

∂z2
(r, 0)∆z2 + O(∆z3) (29)

we use the boundary conditions (22) to obtain, again to second order,

u(r, 0) =
1

r

∂ψ

∂z
(r, 0) ≈ −1

r

1

∆z
ψ(r,−∆z). (30)

Hence, critical points on the surface are the zeros of the stream function evaluated at
the grid line below the surface, ψ2(r) = ψ(r,−∆z). Bifurcation curves for the creation
and destruction of critical points on the surface are found by a fitting procedure on
the basis of values of ψ2 at extremum points p2 analogous to the above.

For critical points in the corner the approach is slightly different. As shown in
figure 4, either a critical point crosses the corner or a corner bubble is created when a
bifurcation occurs. In both cases, the direction of the flow close to the corner reverses
in the bifurcation. Since ψ(0, 0) = 0, the direction of the flow in the corner is given by
the sign of ψ(∆r,−∆z). Bifurcation occurs when this quantity is zero which we use as
the basis for fitting bifurcation curves.

In this way all codimension-one bifurcation curves involving critical points on the
axis and surface can be found. Finally, to determine cusp bifurcations as in figures
2(c) and 5(a) we proceed in a rather straightforward way. By visual inspection of the
streamline pattern from a simulation close to a cusp bifurcation it was decided whether
two critical points had merged or not. A bifurcation point is then determined as the
mean value of two sufficiently close pairs of parameters for which the simulations are
of distinct types. The bifurcation curves is obtained by connecting such points by a
spline.

Our simulations indicate that the loss of stability occurs through a supercritical
Hopf bifurcation. To locate the Re bifurcation point for fixed h we follow Daube &
Sørensen (1989) and Brøns et al. (1999). For three slightly supercritical values of Re
we determine the square a2 of the amplitude of the oscillation at a fixed grid point.
At a Hopf bifurcation a2 locally scales linearly with the parameter. Making a least
squares fit of a2 as a function of Re the bifurcation point can be determined from an
extrapolation to the point where a2 = 0. The procedure is repeated for three different
grid points, and the final bifurcation point is the mean value of the bifurcation points
thus obtained.

3.2. Numerical accuracy

Previous comparisons of the results from the solver with experiments for the configura-
tion with a fixed cover at h = 2 (Sørensen & Christensen 1995; Sørensen & Loc 1989;
Westergaard, Buchhave & Sørensen 1993) showed that a grid with ∆r = ∆z = 0.01
gave results within experimental accuracy. For the same aspect ratio the influence
of the grid on the topological bifurcations was investigated by Brøns et al. (1999).
Here the investigation is extended to cover three other aspect ratios, h = 0.5, 1.5 and
2.5. For each case three different grid sizes consisting of 50 × 50h, 100 × 100h and
200 × 200h for h larger than one and 50/h × 50, 100/h × 100 and 200/h × 200 for h
less than one are used. We refer to these grids as coarse, medium, and fine.
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Coarse Medium Fine

h = 0.5 240 240 240
h = 1.5 721 729 730
h = 2.5 1420 1459 1466

Table 1. Influence of mesh size on Re at topological bifurcation for fixed h. At h = 0.5, the
bifurcation is the creation of a bubble in the corner, while for h = 1.5 and h = 2.5 it is the creation
of a bubble on the axis.

Fixed h From curve

h = 0.25 1006 991
h = 0.5 240 256
h = 1.5 729 731
h = 1.5 1808 1799
h = 2.5 1459 1488

Table 2. Values of Re at bifurcation found at fixed values of h, compared with bifurcation points
from two-parameter bifurcation curves.

Coarse Medium Fine Very fine

h = 0.5 6246
h = 0.75 3859 3714 3769 3783
h = 1.0 2564
h = 1.5 2460 2636 2640
h = 2.0 2921
h = 2.5 2499 2725 2787
h = 3.0 3046
h = 3.5 3316
h = 4.0 3659

Table 3. Stability limits in Re for different grids.

First, for a fixed value of h, we have performed three simulations at different Re
and found the bifurcation measures, either ψ(p1), ψ2(p2), or ψ(∆r,−∆z), as described
in § 3.1. Making a least-squares linear fit, a bifurcation point Re is found when the
measure is equal to zero. The simulations are performed close to and on both sides
of a bifurcation.

In table 1 the results of this procedure using the coarse, medium and fine mesh
are shown. The mesh size can have a significant effect on the bifurcation point on
changing from the coarse to the medium mesh. However the maximum dispersion on
changing from the medium to the fine mesh is only 7 in Re which is satisfying in this
context.

Secondly, in table 2, we compare bifurcation points found with this method (first
column) with bifurcation points at a bifurcation curve determined by the fitting
procedure described in § 3.1. The latter points are found by inserting the value of h
in the equation for the relevant bifurcation curve among those shown in figure 6.
The deviation was found to be between 2 and 29 in Re which in the worst case is
approximately 1% of the full Re interval considered here.

Finally, we test the grid influence on the stability limit. The result is shown in table
3. Again we see a large difference between the coarse and the medium grid, but results



Topology of vortex breakdown bubbles in a cylinder 143

3000

2500

2000

1500

1000

500

0 1 2 3 4

a

h

j

d
Re

h

c

Figure 6. Overall bifurcation diagram. The labels refer to the classification in figure 1 and the
symbols show parameter values where simulations are performed. ×, No bubbles, type (a); +, axis
bubble, type (b); �, corner bubble, type (c); 5, surface bubble, type (d); ∗, two axis bubbles, type
(e); e, axis bubble and corner bubble, type (f); ., corner bubble with inner structure, type (h);
4, surface bubble and corner intrinsic saddle loop, type (j); �, points used for spline fits of cusp
bifurcations; •, codimension-two points. The curves show the bifurcation sets obtained from fits of
the data: —–, creation of a bubble on axis or surface; − · −, creation of corner bubble from axis
bubble or surface bubble; – – –, cusp bifurcations, from figure 7 and 8; · · · · · ·, creation of corner
bubble. The heavy curve is a spline fit of the stability limit based on data from table 3 using the
medium grid. The corresponding symbols are the data points that are in the range of the diagram.

from the medium and fine grid agree within an Re range of 62. We have further
tested the case at h = 0.75 on a very fine grid of size 310× 250, and get only a small
change from the result from the fine grid. This can also be compared with the results
by Gelfgat et al. (1996c), who found the stability limit for the configuration with
a cover co-rotating with the same angular velocity as the bottom. Their parameter
values correspond to h = 0.75 here, and their result of Re ≈ 3840 agrees with our
finding within a reasonable accuracy.

4. Results
4.1. The numerical bifurcation diagram

Using the methods described in § 3.1, we have determined a set of codimension-one
bifurcation curves in the (h, Re) parameter plane. The overall diagram is shown in
figure 6 with finer details in figures 7, 8.

First, we have found a curve of corner bifurcation points in the form C = 0. The
curve is found using the measure ψ(∆r,−∆z) which does not distinguish between a
corner bubble creation and a corner crossing. The type of bifurcation may change
along the curve at codimension-two points. However, the curve goes smoothly through
such points as it locally corresponds to ε = 0 in figure 5. Hence it makes sense to
make a single smooth global fit of the curve. It is shown in figure 6 with dotted and
dash-dotted parts.

Then a curve of axis bifurcations and a curve of surface bifurcations are deter-
mined, shown as full lines. The latter curves meet the corner bifurcation curves at
codimension-two bifurcation points, (h, Re) = (0.92, 419) and (0.44, 436) respectively.
From the topologies of the simulations performed close to these points we identify
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Figure 7. Detail of the bifurcation diagram. Same legend as figure 6, but ?, corner bubble with inner
corner bubble, type (i); · · · · · · (lower), creation of corner bubble; · · · · · · (upper), axis stagnation
points from inner and outer corner bubble merge and form a saddle loop.
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Figure 8. Detail of the bifurcation diagram: (a) to scale, (b) the qualitative arrangement of the
bifurcation lines. Same legend as figure 6, but / , axis bubble with inner structure, type (g); ——
(upper), creation of second axis bubble; · · · · · ·, two critical points on the axis merge and form an
inner structure.
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the type as in figure 5(b). The theory ensures that there are no further bifurcation
curves originating at the codimension-two points.

The bifurcation diagram established to this point appears to imply the existence of
a bifurcation curve separating type (c) from type (j). Clearly, this is not possible in a
single codimension-one bifurcation, and further simulations show that very close to the
curve there is a curve of axis bubble merging bifurcations (as in figure 2c). This curve,
shown in figure 7, intersects the corner bifurcation curve at a codimension two point
at (h, Re) = (1.42, 1686). The type is figure 5(b). It follows that another bifurcation
curve must emanate from the codimension-two point, namely a cusp bifurcation
curve. This is indeed the case, and the curve is shown dashed in figures 6, 7.

Finally, proceeding as above, we have located three more bifurcation curves: an
axis bubble creation curve, an axis bubble merging curve, and a cusp bifurcation
curve. They meet at a codimension-two point at (h, Re) = (2.24, 1275) as shown in
figure 8. The codimension-two point is of the type shown in figure 2(d).

This completes our investigation of the topologies of the flow. A small part of the
diagram was also found numerically by Valentine & Jahnke (1994) and our results
essentially agree. It should be noted, however, that the diagram is not complete. For
low values of h and high values of Re there is a series of bifurcations leading to
a cellular flow structure, as exemplified by (v) and (w) in figure 1. These structures
are outside the scope of the present study, and we only mention that Valentine
& Jahnke (1994) determined some of the bifurcation curves leading to the cellular
structure. Undoubtedly, there is a complicated topological bifurcation structure in
this parameter region.

We have included an estimation of the stability limit in figure 6. A spline fit of the
nine Hopf bifurcation points obtained with the medium grid (table 3) is shown as a
heavy curve. The four bifurcation points that are in the range of the diagram are also
shown. The curve agrees with a similar curve obtained by Gelfgat et al. (1996a) which
includes the range 0 6 γ 6 1.5. Note that their definition of γ is twice the one we use.

4.2. Comparison with experiments

Spohn, Mory & Hopfinger (1993, henceforth denoted SMH) have performed a series
of experiments with the flow in the steady domain. Using a fluorescent dye injected at
the cylinder axis on the free surface the structures close to the axis are visualized by
a laser light sheet. The findings were summarized in a bifurcation diagram similar to
figure 6. However the classification of the flow patterns is not as detailed as the one
presented here. SMH denote a bubble ‘attached’ if one critical point is on the surface
regardless of the position of the other critical point. Hence, they do not distinguish
between type (c) and type (d). Further, a bubble is denoted ‘detached’ if both critical
points are on the axis, and ‘long’ if it has an inner structure like types (g) and (h).

From the diagram we have extracted three bifurcation curves: transitions from no
bubble to a detached bubble, from a detached bubble to an attached bubble, and from
an attached bubble to a long attached bubble. In our terminology these correspond
to axis bubble creation, corner crossing, and cusp bifurcation, respectively.

Rather than using the bifurcation curves loosely sketched by SMH, we have
estimated the bifurcation points directly from the measurement points indicated in
their bifurcation diagram, assuming that a bifurcation occurs midway between two
measurements with a different topology. The resulting bifurcation points are shown
as symbols in figure 9.

We find good agreement for the axis bubble creation when h > 1, while the results
deviate somewhat for 0.5 < h < 1. The experimental corner crossing curve is system-
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Figure 9. Comparison between numerical results and measurements by Spohn et al. (1993). The
curves are from figure 6, while symbols are experimentally determined bifurcation points: 4, axis
bubble creation, corresponding to the full line, e, corner crossing bifurcation, corresponding to the
dash-dotted line; �, inner structure in corner bubble vanishes in a cusp bifurcation, corresponding
to the dashed line; �, experimental codimension-two point.

atically located at higher values of Re than the numerical one. The two curves meet
at a codimension-two point as in our model, but the location is different. In fact, our
bifurcation diagram contains two codimension-two points for Re close to 500. There
must be another bifurcation curve emanating from the codimension-two point, but
the experimental data do not contain sufficient information to determine it.

The cusp curves do not agree very well, although their general locations in the
diagram are comparable.

SMH have also found a region with a ‘long detached bubble’, type (g). This is
located around the tiny region where we have found it (see figure 8), but it is much
larger.

The stability limit found by SMH is approximately Re = 2100 independent of h
when h < 2.5, and rises monotonically for higher values of h, ending at Re ≈ 2800 at
h = 4, the highest aspect ratio considered. These values are substantially lower than
our findings shown in table 3 and figure 6.

5. Conclusions
We have demonstrated the power of a topological approach to the identification

of patterns in flows. The building blocks of a two-parameter bifurcation diagram
are curves of codimension-one bifurcations which meet at codimension-two points.
The bifurcation curves can be found from a relatively small set of simulations and
from the topological catalogue of codimension-two points the total diagram can be
patched together with confidence.

In the specific application, the flow in a cylinder with a rotating bottom and a
free surface, the agreement between numerics and experiment is not as good as for
the flow with a fixed cover (Brøns et al. 1999). The discrepancy of the stability limits
is not surprising: in the model oscillations of the free surface are not possible, and
surface waves clearly play a role in the transition to periodic flow. Hence one should
indeed expect that the real instability occurs at an earlier stage. Furthermore, in the
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flow with a fixed cover, Escudier (1984) finds experimentally that the transition to
periodic flow is always to a three-dimensional flow when h > 3.1. One can expect that
in the present case three-dimensional effects are even more pronounced.

The differences between computations and experiment may also partly be ascribed
to the resolution of the visualization being not nearly as good as in the fixed cover
case. Due to light reflections from the surface and the injection tube, the region close
to the corner is rather blurred. This makes it very difficult to locate critical points
here and hence to precisely find bifurcations at the corner.

However, the main problem is clearly that the modelling of the surface as flat and
stress free is a strong simplification, especially for small aspect ratios. In addition to
including free-surface motion, the effect of a surface film was considered by Lopez &
Chen (1998) in their computational study of the flow. The streamline topology was
shown to depend on the physical characteristics of the film.

We conclude that the dynamics of the free surface has an influence on the flow
topology, but much of the structure of the bifurcation diagram is reproduced by our
model. The topological classification depends only on the axis and the surface being
iso-curves of ψ and not on the fluid dynamics. Hence, if surface effects are included in
the mathematical model, the same building blocks for the topology will be relevant.
If surface effects are small, the bifurcation diagram will persist qualitatively, although
the quantitative shape of the bifurcation diagram will change. However, if surface
effects result in major changes in the overall flow, the bifurcation diagram may be
altered significantly.

The flow topologies (i) and (j) are not found at all by SMH. Case (j) is probably
very difficult to identify experimentally since visualization of the quite small saddle
loop requires that tracer is somehow transported into the loop. Case (i) is only
predicted to exist in a very narrow parameter region. In general, we find a number of
very narrow regions in the bifurcation diagram which will be almost impossible to find
experimentally. Nevertheless, these regions are important to establish computationally,
since they are essential parts of a consistent bifurcation diagram.

The types of codimension-one bifurcation curves found by SMH are the same
as we find from the topological analysis. However, the way SMH merge these at
codimension-two points does not in all cases agree with the theory. This is a subtle
matter since one can easily think of bifurcation diagrams in a neighbourhood of a
codimension-two point which are topologically feasible, but, by a specific bifurcation
analysis as in § 2.2 can be shown to be impossible.

Hence, the present approach should be helpful as a guide for further experimental
investigations.

We are grateful to Andreas Spohn for some very useful comments about the
experiment.
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forschung, Göttingen.

Westergaard, C., Buchhave, P. & Sørensen, J. N. 1993 PIV measurements of turbulent and
chaotic structures in a rotating flow using an optical correlator. In Laser Techniques and
Applications in Fluid Mechanics (ed. R. J. Adrain). Springer.

Xue, S. C., Phan-Thien, N. & Tanner, R. I. 1999 Fully three-dimensional, time-dependent numerical
simulations of Newtonian and viscoelastic swirling flows in a confined cylinder part I. Method
and steady flows. J. Non-Newtonian Fluid Mech. 87, 337–367.


